
CS 747: Foundations of Intelligent and Learning Agents Jul-Nov 2018

Project Report :

Progressive Neural Networks for Multitask Learning

Students : Sneha Bhakare (150050040), Videsh Suman (150040095)

Abstract

Deep neural networks provide rich representations that can enable reinforcement learning
algorithms to perform effectively. Learning to solve complex sequences of tasks−while both
leveraging transfer and avoiding catastrophic forgetting−remains a key obstacle to achieving
human-level intelligence. Through this project, we have explored the area of multitask learn-
ing using the novel approach of progressive neural networks. This form of network architecture
represents a step forward in the above stated direction: they are immune to forgetting and can
leverage prior knowledge via lateral connections to previously learned features. We have eval-
uated this architecture on the baselines of the asynchronous advantage actor critic algorithm
for two Atari games, Pong and Breakout.

1 Introduction

The foundation of deep reinforcement learning was laid by Deep Q-Networks[4], which made it
possible for a single agent (a neural network with same hyperparameters) to be trained indepen-
dently to perform exceptionally well on a whole range of tasks. However, deriving inspiration from
the human learning phenomenon, the agent should be able to leverage prior experiences to acquire
new knowledge instead of starting from scratch when trained for a different task. This knowledge
reusability for similar tasks has been taken care of by disciplines such as representation and trans-
fer learning. Similarly, multitask learning can be helpful when training data is insufficient for a
particular task, and the prior knowledge from similar tasks can be used for the current problem
at hand. However, these techniques still have severe limitations when comes to learning similar
tasks in the same model. In the usual vanilla transfer learning approach, a model is pretrained on
a source domain (where data is often abundant), the output layers of the model are adapted to the
target domain, and the network is fine-tuned via backpropagation. However, this approach has a
major drawback of catastrophic forgetting, while leveraging knowledge transfer.
In 2016, Andrei et al. [6] suggested progressive neural networks (PNN) approach which are sup-
posed to be immune to forgetting and can leverage prior knowledge via lateral connections to
previously learned features. In their work they have relied on the asynchronous variant of the
advantage actor-critic (A3C) framework introduced by Mnih et al.[3] as their baseline. The A3C
algorithm has been posited to have surpassed the previous GPU-based state-of-the-art results on
a variety of RL tasks based experiments merely run on a standard multi-core CPU machine in far
less time. As a part of this research, we claim to have implemented Progressive Nets as a wrapper
around the A3C framework to explore the possibility of multitask learning on two related RL tasks
of the Atari games Pong and Breakout. We have

2 Literature

Transfer and multi-task reinforcement learning are recognized as critical challenges in AI research.
Many methods for transfer learning rely on linear and other simple models [7], which is a limiting
factor to their applicability. With the advent of deep RL, there have been new methods proposed

1



2

for multi-task or transfer learning. The actor-mimic approach [5] applied these principles to re-
inforcement learning, by fine-tuning a DQN multi-task network on new Atari games and showing
that some responded with faster learning, while others did not.
Pretraining and finetuning was proposed in [2] and applied to transfer learning in [1], generally in
unsupervised-to-supervised or supervised-to-supervised settings. Here, the model is pretrained on
a source domain usually where data is abundant, the output layers of the model are adapted to the
target domain, and the network is finetuned via backpropagation. This approach was pioneered
in [2] by transferring knowledge from a generative to a discriminative model, and has since been
generalized with great success [1]. Furthermore, while finetuning may allow us to recover expert
performance in the target domain, it is a destructive process which discards the previously learned
function.
Asynchronous advantage actor-critic (A3C) [3] is an asynchronous variant of actor-critic. It main-
tains a policy π(at|st;Θ) and an estimate of the value function V (st;Θv). It operates in the forward
view and uses mix of n-step returns to update both the policy and the value-function. The policy
and the value function are updated after every tmax actions or when a terminal state is reached.
Progressive nets enables agent not only learn to (and remember) a series of tasks experienced in se-
quence, but also have the ability to transfer knowledge from previous tasks to improve convergence
speed. This is achieved by modifying the model architecture: catastrophic forgetting is prevented
by instantiating a new neural network (a column) for each task being solved, while transfer is
enabled via lateral connections to features of previously learned columns.
A progressive network starts with a single column: a deep neural network having L layers with

hidden activations h
(1)
i ∈ Rni , with ni the number of units at layer iL, and parameters Θ(1) trained

to convergence. When switching to a second task, the parameters Θ(1) are frozen and a new column

with parameters Θ(2) is instantiated (with random initialization), where layer h
(2)
i receives input

from both h
(2)
i1 and h

(1)
i1 via lateral connections. This generalizes to K tasks as follows:

h
(k)
i = f(W

(k)
i h

(k)
i1 +

∑
j<k

U
(k:j)
i h

(j)
i1 ),

where W
(k)
i ∈ Rni×ni−1 is the weight matrix of layer i of column k, U

(k:j)
i ∈ Rni×nj are the lateral

connections from layer i− 1 of column j, to layer i of column k and h0 is the network input. f is
an element-wise non-linearity: we use f(x) = max(0, x) for all intermediate layers. A progressive
network with K = 3 is shown in Figure 1.

Figure 1: (Source - Andrei et al.[6]) Depiction
of a three column progressive network. The first
two columns on the left (dashed arrows) were
trained on task 1 and 2 respectively. The grey
box labelled a represent the adapter layers (see
text). A third column is added for the final task
having access to all previously learned features.



3

3 Method

3.1 Asynchronised Advantage Actor-Critic (A3C)

We have implemented Asynchronised Advantage Actor-Critic (A3C) on 2 OpenAI Gym test en-
vironments i.e. Pong and Breakout. The frames in the game are the inputs to the A3C network.
The input image is preprocessed by converting from RGB to grayscale and downscaling to size 80 x
80. Total 20 processes have been run asynchronously. The model of individual processes is synced
with the shared model every 20 time steps. The network architecture used for A3C is mentioned
in Table 1. Here, Linear1 layer represents the critic i.e it is the value estimate and Linear2 layer
represents the actor i.e. it is the policy. The implementation is done in Pytorch.

Layer Input Channels Output Channels Kernel Size Stride Padding Activation
Conv1 1 32 3 x 3 2 1 elu
Conv2 32 32 3 x 3 2 1 elu
Conv3 32 32 3 x 3 2 1 elu
Conv4 32 32 3 x 3 2 1 elu
GRUCell 800 256
Linear1 256 1
Linear2 800 no. of actions

Table 1: Network Architecture for A3C

The hyperparameters used are discount factor = 0.99, learning rate = 0.0001. The A3C network
is trained on Pong and Breakout for 20 million timesteps. The training time required for this was
23 hours.

3.2 Progressive Neural Network

The Progessive Neural Network has two columns corresponding to the two tasks. Each column has
network architecture same as A3C. The modification in architecture is that lateral connections are
added. The first column is initialised with a pretrained model of task 1 and the weights for this
column are frozen. The second column corresponds to task 2.

Figure 2: (a) PNN Layout



4

4 Results

The A3C network is trained on Pong and Breakout for 20 million timesteps as shown in Figure 3.

Figure 3: (a) Pong A3C, (b) Breakout A3C

The first column of Progressive Neural Networks is initialized with weights of Breakout at 8 million
timesteps, then it trained on Pong for further 6 million timesteps as shown in Figure 4

Figure 4: (Pong PNN pretrained on Breakout

The A3C network works well for Pong and Breakout. The PNN network requires more training to
perform better than A3C of Pong as well as Breakout.

5 Future Work

In the future, we are interested to study in detail, the transfer analysis of the features being passed
on from the source columns to the target task. Unlike finetuning, progressive nets do not destroy
the features learned on prior tasks, thus a relevant sensitivity analysis can be helpful in evaluating
the impact of the prior frozen tasks (positive or negative) on the target problem. For this, a naive
approach is to evaluate the average perturbation sensitivity[6] by inject Gaussian noise at isolated



5

points in the architecture (e.g. a given layer of a single column) and measure the impact of this
perturbation on performance. A significant drop in performance indicates that the final prediction
is heavily reliant on the feature map or layer.
Besides, more recent and robust baselines like Actor Critic using Kronecker-Factored Trust Re-
gion (ACKTR)[9] and Proximal Policy Optimization[8] algorithms need to be probed as plausible
frameworks for the progressive nets method.

References

[1] Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. 2012.
http://proceedings.mlr.press/v27/bengio12a/bengio12a.pdf.

[2] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. 2006. http://science.sciencemag.org/content/313/5786/504.

[3] Volodymyr Mnih, Adri Puigdomnech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. arXiv, 2016. https://arxiv.org/abs/1602.01783.

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv, 2013.
https://arxiv.org/abs/1312.5602.

[5] Mark B. Ring. Actor-mimic: Deep multitask and transfer reinforcement learning. arXiv, 2016.
https://arxiv.org/abs/1511.06342.

[6] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv,
2016. https://arxiv.org/abs/1606.04671.

[7] Paul Ruvolo and Eric Eaton. An efficient lifelong learning algorithm. 2013. http://

proceedings.mlr.press/v28/ruvolo13.pdf.

[8] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv, 2017. https://arxiv.org/abs/1707.06347.

[9] Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. arXiv, 2017.
https://arxiv.org/abs/1708.05144.

http://proceedings.mlr.press/v27/bengio12a/bengio12a.pdf
http://science.sciencemag.org/content/313/5786/504
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1511.06342
https://arxiv.org/abs/1606.04671
http://proceedings.mlr.press/v28/ruvolo13.pdf
http://proceedings.mlr.press/v28/ruvolo13.pdf
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1708.05144

	Introduction
	Literature
	Method
	Asynchronised Advantage Actor-Critic (A3C)
	Progressive Neural Network

	Results
	Future Work

